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Energy Levels of Ax** Anharmonic Oscillators Using
the Quantum Normal Form
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The ground state and first few excited energy levels of the generalized anharmonic
oscillator defined by the Hamiltonian H = —d?/dx>+x*+Ax* (k=3,4,...)
have been calculated by employing the method of quantum normal form, which
is the quantum mechanical analogue of the classical Birkhoff-Gustavson normal
form. The present energy eigenvalues are consistent with other tabulations of
the energy levels.

1. INTRODUCTION

In recent years there has been a large and important literature on the
methods for studying a well-known class of single-well quantum anharmonic
oscillators. These one-body Schrodinger problems have played a particularly
important role in recent years as model bosonic field theories which contain
only one mode. This mode is generated by the usual harmonic oscillator
creation operator a'. In this respect the anharmonic oscillators may be
considered as the (0+ 1)-dimensional counterparts of more realistic quan-
tum field theories in the physical world of {3+ 1)-dimensionality.

The present paper deals with the Schrédinger equation for the one-
dimensional Hamiltonian operator

H=Yp2+x)+ x> (1)

with p=—id/dx, k=2,3,4,..., which represents a 2k-anharmonic oscil-
lator. This problem has been attacked by a number of workers using different
techniques (Arponen and Bishop, 1990; Biswas et al., 1973; Hio et al., 1976;
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Marziani, 1984; Taseli and Demirlap, 1988; Austin, 1984; Bhattacharya et
al., 1984; Banarjee, 1978; Fernandez et al, 1985). We have employed the
formalism of quantum normal form (QNF), which is the quantum
mechanical analogue of the classical transformations to Birkhoff-Gustavson
normal form (BGNF) (Birkhoff, 1927, Gustavson, 1966), to study the
problem.

2. THEORY

We introduce the creation and annihilation operators in the basis set
of harmonic oscillator wave functions,

a=2""*x+ip) (2)

a"=2""*(x~ip) (3)
4

p=" dx @

where the symbols have their usual meanings.

We have
[a,a7]=1 (5)
aln)=n"?n-1) (6)
atln)=mn+1)"n+1) (7

where |n) represents the nth eigenket of the harmonic oscillator.

The Hamiltonian (1) has been discussed in the literature for various
values of k. The case k=2 has been studied independently by Ali (1985)
and Eckhardt (1986) using the QNF, which has been used by Brajamani
and Mazumdar (1988) to study the case k=3 for A « 1. However, they did
not present the converged energy eigenvalues.

Transformations to normal form can be started from a Taylor expansion
of the Hamiltonian around a point of equilibrium,

H=Ho+¥ A"H, (8)
"

where

Hy=a"a+3 C)]
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is the harmonic part and where H is a polynomial in a* and a, homogeneous
of degree u + 2. Obviously the quadratic part of H, is already in the normal
form. A Lie transformation (Eckhardt 1986, 1988; Brajamani and Mazum-
dar, 1988) with a generator S, and a ‘“‘time variable” & = A can be used to
transform the increasing order of perturbation to normal form and we find
that

n—1
H=H,+ ¥ AH,+A"(H,+[S,, H])+ 01" (10)
m=1
Since lower-order terms are not affected by the transformation, S, can be
used to eliminate nonnormal terms in H,. This requires solution of an
equation

[S,, Hy]+ H, =normal (11)

As shown by Eckhardt (1988), equation (11) boils down to the fact that we
have to find a self-adjoint operator S, such that

[S,, Hy]=-—Hg (12)

where Hpy is the nonnormai part in H.

Using the ladder operators defined in equations (2) and (3), the quan-
tum mechanical Hamiltonian operator of the one-dimensional x** oscillator
is

A
H=%(P2+x2)+§(a+a+)2k (13)

In order to tackle the expression (a+a')?* the main problem arises
from the fact that a and a™ do not commute. But it is possible to express
the bionomial expansion (a*+a)” through Newton binomials as (Duch,

1983)
[p/2]
(a*+a) =Y C2m-D)!"’c,,(a"+a)}3 ™" (14)
m=0
[p/2] is the integer part of p/2, and
2m-DU=1-3-5-7-----(2m-1) 15)

(a"+a)% is a Newton binomial, which is defined as

(@ +a)= ¥ “ola)"a (16)
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In the present case p =2k. We have

(a+a+)2k =[(a+2k+a2k)+2kc2(a+(2k—2)+a(2k—2))
+310 %, (a" P Y+ 0P N+ QK1)
+[2kc1(a+(2k—1)a+ a+a(2k‘1))
+2kc2(a+(2k—2)a2+a+2a(2k~2))+. ]
+2kcz[(2kR2)cl(a+(2k*3)a + a+a(2k~3))
+(2k~2)cz(a+(2k——4)a2+ a+2a(2k—4))+ .
311 2k [RR) g (FER=S) g gt 4 (2K=5))
+(2k—4)cz(a+(2k—6)a2+a+2a(2k—6))+~ N (17)

Now using (13) and (17), the Hamiltonian for the sextic (k=3) and octic
(k =4) anharmonic oscillators can be written as

H = Hy+ (Hy + Hg) (18)

where Hy and Hjy are, respectively, the normal and nonnormal parts of H:

A
Hy =§(20a+3a3+90a+2a2+90a+a+15) (k=3) (19)

Hy =% (70a**a*+560a™a>+1260a *a*+840a™ a +105) (k=4)
(20)
Hyg =g—[(a+6+ a®)+6(a*’a+a*a’)+15(a™a’+aa")
+60(aa+a*a’)+15(a™*+a*)+45(a*+a?)] (k=3) (21)
Hy =f\g [(a*®+a®)+8(a"a+a*a’)+28(a*%a*+a"?a%)

+56(a’a*+a"a’)+28(a**+a®)
+168(a*a+a*a’)+420(a™a*+aa*)
+210(a**+a*)+840(aa+a"a®) +420(a** + a?)] (22)

From equation (12) we find that to recast H in the normal form we have
to find an operator S, such that’®

A
S, =06 [2(a™®-a®)+18(a"a~a"a’)+90(a**a’—a?a*)

+360(aa—a"a’)+45(a™*~a*)+270(a"* - a?)] (k=3) (23)

It is to be noted that some errors crept into the expressions for S, and E,, for the sextic
oscillator (k =3) as reported by Brajamani and Mazumdar (1988).
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and

A
S, =3ea [3(a™®—a®)+32(a”"a—a"a’)+168(a™%a’—a™?a®)

+672(a™a’>~a"a’)+112(a** - a®)+1008(a**a —a*a’)
+5040(a™a*— a™a*)+1260(a* - a*)+10080(a*a —a*a?)
+5040(a™* - a?)] (k=4) (24)

The crucial point is that once S, is known, then it is a simple exercise to
cast H in the normal form. Corresponding to equation (18), we obtain an
expression for the eigenvalues from equation (10),

2

50 A
E,=(n +§)+—8— (4n’+6n2+8n+3)+1—9—2— (4716n° +11,790n*

+36,660n° +43,200n>+34,584n +10,485)+- - - (k=3)
(25)

351
E,=(n +%)+—16— 2n*+4n°+10n°+8n+3)

2

A
5 (23,9100 + 83,685n°+485,289n° +1,004,010n*

+2,057,055n*+2,123,415n>
+1,455,036n +405,090)+- - - (k=4) (26)

3. RESULTS AND DISCUSSIONS

We find that the transformation to the normal form via a series of
unitary transformations can be carried out to any desired order in A. We
have summed the normal form series following Ali et al. (1986). In Tables
I and II we report the energy eigenvalues of sextic and octic anharmonic
oscillators. The values reported are all consistent with other tabulations of
the energy levels (Banarjee, 1978; Hioe et al, 1976). This fact may be
valuable when studying more realistic and consequently more complicated
system.
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Table I. Energy Levels for the Sextic Anharmonic Oscillator

Ey (n=0) E, (n=1) E; (n=2)
0.0001 0.5002 1.501 2.505
0.001 0.5018 1.512 2.543
0.01 0.5154 1.595 2.794
0.1 0.5869 1.950 3.691
1 0.8048 2.875 5.772
10 1.282 4.756 9.807
100 2192 8.254 17.18
E; (n=3) E,(n=4) Es (n=5)
0.0001 3.512 4.524 5.542
0.001 3.604 4.702 5.842
0.01 4132 5.606 7.209
0.1 5.774 8.147 10.78
1 9.325 13.41 17.98
10 16.04 23.24 31.30
100 28.22 40.99 55.27

Table II. Energy Levels for the Octic Anharmonic Oscillator

E, (n=0) E, (n=1) E,(n=2)
0.0001 0.5006 1.506 2.524
0.001 0.5054 1.542 2.660
0.01 0.5321 1.705 3.140
0.1 0.6205 2.138 4.226
1 0.8207 3.000 6.211
10 1.191 4.500 9.532
100 1.816 6.967 14.91
E; (n=3) E,(n=4) E; (n=5)
0.0001 3.571 4.590 5.678
0.001 3.904 5.023 6.412
0.01 4.881 6.297 8.325
0.1 6.869 8.881 11.99
1 10.33 13.37 18.25
10 16.02 20.75 28.45

100 2517 32.60 44.78
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